Sweetener influences plasma concentration of flavonoids in humans after an acute intake of a new (poly)phenol-rich beverage.

Phytochemistry and Healthy Foods Lab., Group of Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100, Murcia, Spain. Phytochemistry and Healthy Foods Lab., Group of Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100, Murcia, Spain. Electronic address: rdperles@cebas.csic.es.

Nutrition, metabolism, and cardiovascular diseases : NMCD. 2021;(3):930-938
Full text from:

Abstract

BACKGROUND AND AIM The overconsumption of sucrose is closely related to sugar-sweetened beverages and one of the main factors associated with the increase of metabolic diseases, such as type 2 diabetes, obesity, and insulin resistance. So, the addition of alternative sweeteners to new fruit-based drinks could contribute to minimizing the incidence or severity of these pathologies. Nevertheless, current knowledge on the influence of these additives on the bioactive compounds present in these beverages is still scarce.new-onset hypertension, but few data were published in Asian. We aimed to investigate the association of lipid profiles with new-onset hypertension in a Chinese community-based non-hypertensive cohort without lipid-lowering treatment (n = 1802). METHODS AND RESULTS Hence, to contribute to the understanding of this issue, the plasma concentration of phenolic compounds (anthocyanins and flavanones), after the ingestion of a new maqui-citrus-based beverage, supplemented with sucrose (natural high caloric), stevia (natural non-caloric), or sucralose (artificial non-caloric), was evaluated as evidence of their intestinal absorption and metabolism previous to renal excretion. The beverages were ingested by volunteers (n = 20) and the resulting phenolic metabolites in plasma were analyzed by UHPLC-ESI-MS/MS. A total of 13 metabolites were detected: caffeic acid sulfate, caffeic acid glucuronide, 3,4-dihydroxyfenylacetic, 3,4-dihydroxyfenylacetic sulfate. 3,4-dihydroxyfenylacetic acid di-sulfate, 3,4-dihydroxyfenylacetic di-glucuronide, 3,4-dihydroxyfenylacetic glucuronide-sulfate, trans-ferulic acid glucuronide, naringenin glucuronide, vanillic acid, vanillic acid sulfate, vanillic acid glucuronide-sulfate, and vanillic acid di-glucuronide, being recorded their maximum concentration after 30-60 min. CONCLUSION In general, sucralose provided the greatest absorption value for most of these metabolites, followed by stevia. Due to this, the present study proposes sucralose and stevia (non-caloric sweeteners) as valuable alternatives to sucrose (high caloric sweetener), to avoid the augmented risk of several metabolic disorders.

Methodological quality

Metadata